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We present results for unforced polymer translocation from simulations using Langevin dynamics in two
dimensions �2D� to four dimensions and stochastic rotation dynamics supporting hydrodynamic modes in three
dimensions �3D�. We compare our results to forced translocation and a simplified model where the polymer
escapes from an infinite pore. The simple model shows that the scaling behavior of unforced translocation is
independent of the dimension of the side to which the polymer is translocating. We find that, unlike its forced
counterpart, unforced translocation dynamics is insensitive to pore design. Hydrodynamics is seen to markedly
speed up the unforced translocation process but not to affect the scaling relations. Average mean-squared
displacement shows scaling with average transition time in unforced but not in forced translocation. The
waiting-time distribution in unforced translocation follows closely Poissonian distribution. Our measured trans-
fer probabilities align well with those obtained from an equilibrium theory in 3D, but somewhat worse in 2D,
where a polymer’s relaxation toward equilibrium with respect to its translocation time is slower. Consequently,
in stark contrast to forced translocation, unforced translocation is seen to remain close to equilibrium and
shows clear universality.
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I. INTRODUCTION

The transport of biopolymers through membranes is
present in many biological systems �1�. Motivated by its po-
tential applicability in ultrafast DNA and RNA sequencing
�2–5�, and protein import into mitochondrion �6�, most of the
experimental research has been focused on forced polymer
translocation. However, biological translocation processes
where a strong driving field is not present have motivated
studies on unforced translocation �7�. Partly due to the abun-
dance of detailed processes adding to the complexity of its
dynamics, such as binding of specific proteins on either the
cis or trans side of the membrane, and the effects due to the
properties of the pore and the solvent, experimental studies
on unforced translocation are few �8� compared with the
number of computational studies �see, e.g., �9–16��. In spite
of the extensive research, even the dynamics of the generic
process still remains relatively poorly understood. Hence, the
characterization of the process in connection with simpler or
better understood models seems to be called for.

In unforced translocation, the average polymer transloca-
tion �or escape� time � has been observed to scale with re-
spect to the polymer length N as ��N�. For the scaling
exponent � Langevin dynamics �LD� and Monte Carlo simu-
lations give the identical value of 2.5 in two dimensions �2D�
�9–11,17�. This value is in accordance with the predicted
lower limit �=2�+1 based on the free diffusion of the center
of mass of the polymer �9�. Here, the swelling exponent �
has the value of 0.75 for a polymer in 2D. Recently it has
been argued that this lower limit should be the actual value
of the scaling exponent for unforced translocation �17�. Ac-
cordingly, in three dimensions �3D�, where �=0.588, this
would yield ��2.18. Results from Langevin dynamics
simulations, �=2.23�0.03 �18� and �=2.22�0.06 �17�,
and dynamic Monte Carlo simulations �19�, �=2.23�0.04,
support this argument also in 3D. However, there exist con-

tradicting results. In 3D, �=2.5 was obtained �12,13�, for
which two independent explanations were proposed. Anoma-
lous diffusion was dealt with by fractional Fokker-Plank
equation framework in �12�, whereas a simple scaling propo-
sition �=2+� based on excess monomer density near the
pore was suggested in �13�. In addition, �=2.27�0.04 was
obtained from a three-dimensional coarse-grained molecular-
dynamics simulation where hydrodynamics �HD� was in-
cluded �14�. In 3D free diffusion was claimed to govern the
process. However, since the prediction based on free diffu-
sion and using the Zimm model �as hydrodynamics is in-
cluded� gives �=3��1.77, the result is in agreement only
with the original lower-limit argument �9�. This lower limit
is then the only theoretical result with which all the pre-
sented computational results agree.

Here, we study unforced translocation using both stochas-
tic rotation dynamics �SRD� and LD. This study is motivated
by our previous findings on forced translocation �20,21�
upon which we will reflect our present results. We provided
evidence for the forced translocation as being a highly non-
equilibrium process and explained the observed dynamics by
a simple force balance, valid in the experimentally and bio-
logically relevant force range. Based on purely analytical
calculations, arguments along similar lines have previously
been given by Sakaue �22�.

Longer polymers are more prone to translocate fast
enough that the translocated segments will not have time to
relax to equilibrium �9�. In view of this and our previous
observations on forced translocation, it is important to evalu-
ate the equilibrium assumption of unforced polymer translo-
cation. Since hydrodynamics drastically changes the scaling
of average translocation time with respect to the chain length
and reduces the translocation times in the forced transloca-
tion, first reported in �23� and then by us �21�, it is also of
importance to evaluate its significance for unforced translo-
cation. A previous study reports a negligible effect of hydro-
dynamics on unforced translocation �14�, whereas somewhat
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larger effect was seen in �15�. In the present study we evalu-
ate the effect of hydrodynamics on the unforced translocation
when hydrodynamic modes on the trans and cis sides are
decoupled �see Fig. 1�a��.

In addition to forced translocation we shall also reflect the
unforced translocation upon the so-called “pore escape”
problem, a special case of unforced translocation, where the
entropic effects are eliminated from one side of the wall.
Theoretical interest of this model comes from it relating to
the biologically relevant Brownian ratchet mechanism �7�. It
is also of interest for understanding the intracellular transport
processes through microtubules.

The present paper is organized as follows. In Sec. II the
equilibrium translocation theory is briefly reviewed. Section
III describes the polymer model used in our simulations. In
Sec. IV the implemented translocation models are described.
In Sec. V results are reported and discussed, and summary
and conclusions are made in Sec. VI.

II. EQUILIBRIUM THEORY

We will make comparison to the equilibrium framework
describing the polymer translocation introduced by Sung and
Park �24�, and Muthukumar �25�. In this framework the
translocating polymer segments on the cis and trans sides are
treated as two thermodynamic ensembles separated by a
wall. The polymer translocates from the cis to the trans side
through a narrow pore in the wall �see Fig. 1�. The partition
sum Zn of a polymer with n monomers in a semi-infinite
space bounded by a hard wall to which one end of the poly-
mer is attached is given by �26�

Zn � �nn��−1�, �1�

where �=0.69 for the attached self-avoiding chain and � is
the connective constant. Assuming that this polymer segment
consisting of n monomers is in thermal equilibrium, its free
energy can be written as Fn=−kBT ln Zn. Now, if the seg-
ments of the translocating polymer, s and N−s monomers
long, on either side of the wall are in separate thermal equi-
libria, the free energy for the whole polymer can be written
as

Fs

kBT
= �1 − ��ln�s�N − s�� . �2�

Here, the pore is assumed to be short, so the beads inside it
need not be taken into account.

III. POLYMER MODEL

The standard bead-spring chain is used as a coarse-
grained polymer model with both LD and SRD methods. In
this model adjacent monomers are connected with anhar-
monic springs, described by the finitely extensible nonlinear
elastic potential,

UFENE = −
K

2
R2 ln�1 −

r2

R2� , �3�

where r is the length of an effective bond and R=1.5 is the
maximum bond length. The Lennard-Jones �LJ� potential,

ULJ = 4�	�	

r
�12

− �	

r
�6
, r 
 2−1/6	 ,

ULJ = 0, r � 2−1/6	 , �4�

is used between all beads of distance r apart. The parameter
values were chosen as �=1.2, 	=1.0, and K=60 /	2. The
used LJ potential with no attractive part mimics good sol-
vent.

IV. TRANSLOCATION MODELS

Langevin dynamics model. We use our translocation
model based on Langevin dynamics �20� to perform simula-
tions of unforced translocation in dimensions d� �2,4�.
Hence, the time derivative of the momentum of bead i reads
as

ṗi�t� = − �pi�t� + 
i�t� + f�ri� , �5�

where �, pi�t�, 
i�t�, and f�ri� are the friction constant, the
momentum, random force of the bead i, and the external
force �constant, but exerted only inside the pore�, respec-
tively. Naturally, f =0 for unforced translocation. � and 
i�t�
are related by the fluctuation-dissipation theorem.

The dynamics was implemented using the velocity Verlet
algorithm �27�. The wall containing the pore is a continuous
infinite potential barrier. The pore, aligned with the z axis, is
of diameter a and length 3�a, where a=1 is the Kuhn
length of the modeled polymer. It was implemented using a
damped harmonic potential that centers the beads toward the
z axis. In this pore design the dimension d�2 can be easily
changed. In our simulations �=0.73 and the polymer bead
mass m=16, and kBT=1, where kB is the Boltzmann constant
and T is the temperature. Then, at long times according to
Einstein’s relation, the one-particle self-diffusion constant is
given by D0=kBT /�m�0.086. Time steps of 0.01 and 0.03
were used in the forced and unforced simulations, respec-
tively.

Stochastic-rotation-dynamics model. Simulations includ-
ing hydrodynamics were performed in 3D using SRD �28�.

CIS TRANS

a)

TRANS

CIS

b)
TRANS

c)

(a) (b) (c)

FIG. 1. Snapshots of �relaxed� initial configurations in 3D for
�a� unbiased translocation with N=101 �so initially s=51�, �b�
forced translocation with N=100, and �c� unforced pore escape with
N=101 �not all of the beads inside the quasi-one-dimensional tun-
nel are shown�. Distance 3b from the pore opening is marked with
bold lines.
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Our SRD translocation model has been previously used for
simulating forced translocation �21�. Except for the wall and
the pore regions, the simulation space is filled with fictitious
solvent particles. The dynamics consists of consequent colli-
sion and streaming steps. The solvent space is divided into
cells, within which the fictitious solvent particles perform
simplified dynamics where collisions among them and with
the polymer beads are taken effectively into account by ran-
domly rotating the noncollective �random� parts of their ve-
locities. Hence, the collision step can be written as

vi�t + �tSRD� = R� �vi�t� − vcm�t�� + vcm�t� , �6�

where vi are the particle velocities inside a cell, �tSRD is the
time step for solvent dynamics, R� is the rotation matrix, and
vcm is the center-of-mass velocity of the particles within the
cell. Hydrodynamic modes are supported over the cells re-
sulting in a finite Reynolds number. The collision step is
followed by the free-streaming step where particle i’s posi-
tion ri is moved according to

ri�t + �tSRD� = ri�t� + vi�t��tSRD. �7�

Thermostating is done by rescaling all solvent particle ve-
locities, so that equipartition theorem holds at all times. The
polymer beads move according to detailed molecular dynam-
ics. In addition, they take part in the above-described SRD
steps that are performed every 50th molecular-dynamics time
step.

A slit of width 25a for N
31 or 32a for N�31 is formed
by two aligned plates in the yz plane. The solvent-filled
space between the plates is divided by a wall in the xy plane.
This wall contains the pore. The simulation space is 32a
wide in y and z directions. These directions are periodically
connected. All walls are continuous and impose a no-slip
boundary condition to the fluid particles. Inside the pore
polymer beads perform only molecular dynamics. The diam-
eter of the cylinder-shaped pore is 1.2a. Exactly as in the LD
based model, the pore contains a damped harmonic potential
centering the beads toward the axis of the cylinder. Also in
this model a=1 and kBT=1.

In both models the polymer having an odd number of
beads N is initially placed halfway inside the pore �see Fig.
1�a��. The polymer is then let relax for a time longer than its
Rouse relaxation time. We register events when the segment
s=s0 is replaced with segment s0−1 or s0+1 in the middle of
the pore. The polymer is considered translocated, when it has
completely exited the pore to the trans side.

V. RESULTS

A. Scaling with polymer length

As our implementation of the pore and the continuous
wall differs from the most frequently used type of implemen-
tation based on immobile “particles,” we first check if it has
effect on the scaling relation for unforced translocation, �
�N�, where � is the translocation time or the time it takes
for the polymer to exit the pore, N is the polymer length, and
� is the scaling exponent. This is crucial for validating our
previous results for forced translocation �20,21� as there ex-

ists at least a reasonable agreement on the scaling exponents
in the unforced case.

For unforced translocation in 2D, we obtain �
=2.55�0.05, shown in Fig. 2�a�, which is in good agreement
with the scaling result of �=2.5 obtained by others �9–11�.
In 3D, we have �=2.33�0.05 from LD simulations �see
Fig. 2�a��, which falls between the results ��2.23 in
�17–19� and �=2.5 in �12,13�. Hence, our model produces
the to some extent established scaling relations for the un-
forced translocation, which may potentially be universal.
Hence, our previous arguments for the strong nonequilibrium
nature of the forced translocation remain valid.

Making use of our pore implementation in the LD trans-
location model, we obtain �=2.26�0.05 in the dimension of
4 �see Fig. 2�a��. Of the previously introduced scaling argu-
ments, �=2�+1 �9� and �=2+� �13�, only the first remains
as a valid lower limit in four dimensions �4D�, where �
=0.5 �ideal chain�.

In addition to the scaling, the data in Fig. 2�a� show that
the translocation of a chain of fixed length becomes faster as
the number of dimensions increases from two to four. For
example, for fixed N=31, �=12 161�768 �2D�, 9020�721
�3D�, and 6613�537 �4D�. This follows from the equiparti-
tion theorem and the increase in the diffusion coefficient D
with increasing dimension d. �For one-particle diffusion the
diffusion constant depends linearly on dimension, D�d.�

In order to characterize the effect of hydrodynamics on
unforced translocation in 3D, we use our SRD model, which
allows for switching hydrodynamics on and off. The translo-
cation time � was computed both with and without hydrody-
namics, keeping N=31 fixed. With HD the translocation time
of the polymer is clearly smaller, �=42 000�3000, than
without HD, �=99 000�8000. However, hydrodynamics
does not have a strong effect on the scaling of the transloca-
tion time, ��N�. We obtain �=2.30�0.07 with HD �see
Fig. 2�b�� and �=2.33�0.05 without HD. A slightly lower
value for the scaling exponent � with hydrodynamics is logi-
cal since the long-range correlations should diminish the ef-
fect of chain length to translocation dynamics. Hence, the
effect of hydrodynamics is much weaker for unforced than
forced translocation �20,21� in accord with the argued highly
nonequilibrium nature of the latter.

104
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N

τ
a)
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10 100

N

τ b)(a) (b)

FIG. 2. Scaling of the translocation time � with respect to the
chain length N for unforced translocation. �a� Results without hy-
drodynamics from Langevin dynamics simulations. The scalings �
�N�, �=2.55�0.05, 2.33�0.05, and 2.26�0.05 are obtained in
2D, 3D, and 4D, respectively �from top to bottom�. The four-
dimensional curve has been shifted down for clarity. For a fixed
length N the translocation actually becomes faster as d increases.
�b� Here, using SRD with hydrodynamics we obtain the scaling
exponent �=2.30�0.07.
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Our scaling exponent �=2.30�0.07 with HD agrees with
�=2.27�0.04 for N� �3,31� obtained in �14�. In contrast to
the model used there, in our model the solvent does not enter
the pore. Hence, in our model the long-range hydrodynamic
modes are not supported across the pore and, accordingly,
whether the solvent enters the pore or not does not seem to
affect the scaling of � with N.

B. Transfer probabilities

Next, we investigate transition probabilities in the un-
forced translocation process. The polymer beads are num-
bered from 1 to N, with the middle bead initially in the pore
and the end bead 1 on the trans and N on the cis side. The
states of the system are labeled by the reaction coordinate s,
defined as the number of the polymer bead currently in the
middle of the pore. The system enters the state s, when the
bead number s enters the middle of the pore. Assuming that
the two polymer segments on each side of the wall are in
separate thermal equilibria, we can calculate the transfer
probability of a “forward move” as Pf�s�= P�s→s+1�
�exp�−��Fs+1−Fs��, where �=1 /kBT and Fs is the free en-
ergy given by Eq. �2�. We obtain

Pf�s� � �1 −
1

s
+

1

N − s
�1−�

. �8�

In our simulations, the pore is 3a long, so beads s−1 and s
+1 are inside the pore, which is taken into account by using
effective values s−1 and N−s−1 for the chain lengths on
trans and cis sides in Eq. �8�.

In Fig. 3�a� the transfer probabilities obtained from the
SRD simulations in 3D are compared to those given by Eq.
�8�. The best fit of the probabilities from both LD and SRD
simulations to the analytical values is obtained for the expo-
nent value �=0.69�0.05, which is the exponent for the self-
avoiding walk �SAW� and hence in agreement with our mea-
sured value for the swelling exponent, �=0.60�0.02, which
for SAW is �=0.588. Consequently, in 3D the unforced

translocation is adequately described by two thermodynamic
ensembles separately in thermal equilibrium, even in the
presence of hydrodynamic modes. However, close to the
chain ends, i.e., when s is close to 1 or N, translocating
segments are inclined to accelerate due to the large entropic
difference of the polymer segments on the two sides of the
wall resulting in a large driving force. This has been studied
in detail elsewhere �16�.

Unlike in 3D, in two dimensions the transfer probabilities
obtained from LD simulations cannot be fitted to those ex-
pected from the equilibrium theory. The best-fit exponent
value �=0.80�0.05 deviates substantially from the analyti-
cally obtained exact value �=61 /64�0.95 �29�. Since the
connective constant �=limn→� �n in Eq. �1� is defined only
in the limit n→� and could otherwise present a nontrivial
dependence on the reaction coordinate s in Eq. �8�, we cal-
culated the values for �n for small n from SAW enumeration
data provided by the authors of �30� on their webpage �31�.
However, in a half space, relevant for our simulation space
divided by the wall, the value of �n saturates to a constant at
very short walks n, and hence the finite polymer length N
=n does not have a significant contribution via Zn on Pf�s�.

Since the potential contribution from finite-size modifica-
tion of equilibrium configuration turned out to be weak, we
are left with the possibility that the deviation of � obtained
by fitting the measured Pf to Eq. �8� might be due to the
unforced translocation in 2D taking place out of equilibrium.
We measured the relaxation times of grafted polymers of
lengths N� �30,100� in 2D, where polymer’s relaxation to-
ward equilibrium is slower than in 3D. The measured auto-
correlation shows exponential relaxation in both dimensions,

Ḡ�r , t− t���exp�−�t− t�� /��, where the overbar denotes aver-
age over all polymer beads. The relaxation times in 2D and
3D are related as �2d

R /�3d
R �1.7 and �2.4 for N=30 and N

=100, respectively. The translocation times are related as
�2d /�3d�1.6, �2.0, and �2.4 for N=31, 101, and 251, re-
spectively. The relative increases in � and �R with respect to
N imply that long polymer chains are more prone to remain
out of equilibrium during the translocation in 2D than in 3D.
This would offer an explanation to the deviation of the mea-
sured exponent � from the exact value obtained from the
equilibrium framework.

C. Average transition time distribution

Next, we determine the distribution of the average transi-
tion time �t
 for the system to move from one state to an-
other, i.e., s→s−1 or s→s+1. Taking the average over 100
simulation runs we obtain the distributions of the transition
time ���t
� for each chain length N �see Fig. 4�. The distri-
butions are normalized such that they cover a unit area. The
distributions both fit Poissonian-like probability density
functions of the form P�t̃�=At� exp�−kt̃�, where t̃= t− t0 and
t0 is a fitting parameter that determines the minimum time for
a transition to occur. The use of the minimum time parameter
t0 is justified by the beads being connected by springs of
finite length which must be traversed prior to any transition.

The distribution of average transition times �t
, i.e.,
waiting-time distribution, does not converge to a Poissonian
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FIG. 3. �Color online� The forward move �cis→ trans� probabil-
ity Pf�s� for chains of length N=51 and 101 for unforced translo-
cation. The solid lines are theoretical predictions from Eq. �8�, de-
rived using the equilibrium free energy. The reduction in N due
finite pore length has been accounted for by using values of N
� �49,99� in theoretical predictions. �a� SRD results where hydro-
dynamics is included and the pore is frictionless. The best fit
�shown� is obtained with �=0.69�0.05. �b� Results from Langevin
dynamics in 2D with frictional pore, N=51, 101, and 251 �from top
to bottom at the right side of the figure�. Hence, the probability
curves asymptotically approach the flat Pf =0.5 line as N is in-
creased. The best fit �shown� is obtained with �=0.80�0.05.
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distribution in detail, as can be seen from the insets of Figs.
4�a� and 4�b�. The correlations due to adjacent polymer
beads being connected are enhanced at high translocation
velocity, i.e., small �t
, deviating the distribution ���t
� from
Poissonian there. Using SRD, similar characteristics are ob-
tained with and without hydrodynamics in 3D and, using LD,
without hydrodynamics in dimensions 2
d
4. Apart from
the deviation at small �t
, the distributions are Poissonian.
The distribution’s exponential tail exp�−kt̃� falls off faster as
d is increased. To determine the effect of hydrodynamics on
the distribution, we compare the results between the 3D LD
and SRD models by using a temporal reference value � for
N=31 without hydrodynamics in order to make the values of
k from Fig. 4 dimensionless, k�=k�N31. We get kSRD

� �442
��SRD,N31=99 000�8000� and kLD

� �230 ��LD,N31
=9020�720�, implying that the tail of the average transition
time distribution ���t
� decays faster with hydrodynamics. In
other words, hydrodynamics decreases fluctuations of transi-
tion times through increased range of correlation.

D. Mean-squared displacement

For the scaling of the mean-squared displacement of the
reaction coordinate s, ��s2�t�
� t�, in Fig. 5�a�, we obtain
�=0.81�0.02 and �=0.88�0.03 in dimensions of 2 and 3,
respectively. These results agree well with the theoretical
prediction, �=2 / �2�+1�, by Chuang et al. �9�, from which �
is 0.8 in 2D, 0.92 in 3D, and their previous computational
confirmation with LD �17�, �=0.80�0.01 �2D� and
0.91�0.01 �3D�. Additionally, we obtain �=0.90�0.05 in
dimension of 4 �not shown�. Since dc=4 is the upper critical
dimension for a self-avoiding random walk �32�, � is not
expected to change when increasing the dimension beyond
this. We checked that the swelling exponent � for both a free
and a grafted polymer decreases as a function of the dimen-
sion in our model. For chains of length N� �25,200� we
obtained swelling exponents �=0.75�0.02, 0.60�0.02, and
0.53�0.02 in dimensions of 2, 3, and 4, respectively, in
agreement with those for self-avoiding random walks,
�=0.75,0.588 in d=2,3, respectively, and for an ideal chain,
�=0.50, in d�4 �33�.

The effect of hydrodynamics, which showed relatively
weak on the scaling of translocation time with polymer
length, is more pronounced on the variance of the reaction
coordinate. At long times a power law is obtained, ��s2�t�

� t�, with �=0.83�0.02 and �=0.88�0.03 with and with-
out hydrodynamics, respectively �see Fig. 5�a��. This is in
agreement with long-ranged hydrodynamic correlations, di-
minishing transition time fluctuations over larger length and
time scales. Hence, hydrodynamics has no effect on transi-
tion probabilities Pf, as noted in the previous section, but
changes only slightly the time distribution of state transi-
tions. This is in contrast to the forced translocation where
hydrodynamic correlations mediate the applied pore force
along the chain, thus enhancing the collective motion of the
chain and so having influence not only on the variance but
also the average of the translocation time.

E. Comparison to pore escape and forced translocation

In order to pin down the difference between the underly-
ing dynamics of the unforced and forced translocation pro-
cesses, we present the anomalous diffusion behavior of the
reaction coordinate s for various cases in 3D �see Fig. 5�b��.
We compare unforced translocation to a pore escape, the
model of which we implemented by placing a polymer half-
way in an infinitely long pore �see Fig. 1�c��. Hereby, the
entropic contributions on the cis side from dimensions per-
pendicular to the pore axis are eliminated. The polymer was
let relax to equilibrium configuration while keeping the
middle bead at the exit of the pore stationary. For both the
unforced translocation and the pore escape model, the mean-
squared displacement of the reaction coordinate s scales with
time, i.e., ��s2�t�
� t�, independent of the chain length N. In
forced translocation, ��s2�t�
 does not follow a power law.
These cases are discussed below.
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FIG. 4. The distribution of average state transition times �t
 for
unforced translocation. Distributions are from �a� three-dimensional
Langevin dynamics with N=31,51,101,251 �distributions in 2D
and 4D are similar� and �b� SRD simulations with hydrodynamics
with N=31,51,75,101. All the distributions are almost Poissonian,
except for the deviation at small values of �t
; see the magnifica-
tions in the insets. The time units in �a� and �b� are model dependent
and cannot be straightforwardly compared. See text for details.
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FIG. 5. �Color online� The mean-squared displacement of the
reaction coordinate s. �a� Unforced translocation. We obtain slopes
of 0.81�0.02 in 2D and 0.88�0.03 in 3D for Langevin simula-
tions, N� �51,101,251�, and 0.83�0.01 for 3D SRD simulations
including hydrodynamics, N� �51,101�. Collapsed data when
��s2�t�
� t� is normalized by N. �b� In 3D, data from LD simula-
tions for various cases; forced and unforced translocations and pore
escape. For forced translocation, f =10, 3, 1, 0.7, and 0.3, respec-
tively, starting from the top. The slope is about 0.92 for f =0.3 and
is increased up to 2.2 for f =10. The mono-black-plot, second from
the bottom, represents unforced translocation data. The diamonds at
bottom represent the pore escape data. Here, N=200 for forced
cases and 251, otherwise. Inset: the data for forced translocation
does not collapse with respect to the force f , nor with respect to the
chain length N �not shown�.
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The entropic difference between a multidimensional heat
bath and the quasi-one-dimensional pore causes the polymer
to quickly escape out of the pore. We observe N dependence
of ��s2�t�
 at short times �not shown�, which does not affect
the scaling in the long-time limit. The pore escape process is
seen to be clearly more subdiffusive in the long-time limit
with �=0.69�0.05 in 2D, 0.75�0.05 in 3D� ��, and
0.83�0.02 in 4D than the regular unforced polymer translo-
cation with �=0.81�0.02 in 2D� �� and 0.88�0.03 in
3D� ��, and 0.90�0.05 in 4D. �For results marked with � ��,
see Fig. 5�a�; others are not shown.� This was to be expected
due to the additional constriction by the infinite pore. Per-
haps a little less trivially, in the pore escape scaling expo-
nents turned out to be independent of the dimension of the
trans side heat bath for 2
d
4. For each dimension we
obtain �=1.80�0.05 for N� �31,51,101,251� �data not
shown�. Only the magnitude of the translocation time is di-
minished with increasing dimension of the trans side. Hence,
based on this “simulated gedanken experiment,” the dimen-
sion of the side where from, and not where to, the chain is
translocating seems to determine the subdiffusive character-
istics of the unforced translocation in accord with arguments
giving translocation times that depend on the initial configu-
ration, i.e., the swelling exponent of the polymer on the cis
side.

In the pore escape problem the entropic force fe remains
fairly constant throughout the process. In dimensions of 2
and 3 the free energy is roughly F�−kbT ln Zs, where Zs is
the partition sum for the polymer segment of length s on the
trans side, given by Eq. �1�. Hence, fe=−�F /�s� ln �+ ��
−1� /s, where the first constant term is dominant. In dimen-
sion d�4 we have an ideal chain and fe� ln 2d. Hence, fe is
constant with respect to s. Denoting the entropic force as a
constant C, in the limit of large fe the force balance can be
written as ��N−s�ds /dt=C, where � is the friction coefficient
inside the long pore. Integrating from t=0 to t=� and using
s�0�=N /2 and s���=N, we get ��N2, which we obtained for
forced translocation through a frictional pore starting from
an initially straight polymer on the cis side �20�. The pore
force values used there were larger than the entropic force
here, so the stochastic contribution from the polymer seg-
ment inside the one-dimensional pore diminishes � from 2 to
which it will saturate when increasing the pore force. Indeed,
we checked using pore force f =1 that the waiting times de-
crease linearly with the number of escaped beads, which
gives �=2. In the limit of small pore friction, relevant for
solvent-filled pores, � should approach 1 since the polymer
motion is only limited by the dissipation exerted on the
beads escaped from the pore. Indeed, performing only micro-
canonical molecular dynamics inside the pore we obtain �
close to 1 in dimensions of 2 and 3.

Finally, we compare forced and unforced translocation in
terms of the mean-squared displacement of the translocating
polymer. In the case of forced translocation, the polymer is
placed initially on the cis side, so that only the first beads are
inside the pore �see Fig. 1�b��. We have estimated that f =1,
at which we already observed clear out-of-equilibrium char-
acteristics, for ssDNA corresponds to a total pore force of
about 1.6 pN, which is clearly smaller than experimental
values �21�. The measured ��s2�t�
 for multiple force values

is shown in Fig. 5�b�. ��s2�t�
 is seen to increase with the
pore force. Unlike in the case of unforced translocation, a
data collapse cannot be obtained for different N �see the inset
of Fig. 5�b��. This is in qualitative agreement with �34�,
where “simple scaling” scenarios were ruled out using two
force values. The slope is seen to increase with increasing
force and in time for a constant force. For instance, for f
=0.3 the slope is initially high, then decreasing and finally
increasing toward the end of translocation. This dependence
on t results from the change of the total friction of the chain
on the cis side, �tot�t��sm�t��. The number of “mobile
beads,” sm, first increases, which decreases the slope, and
then decreases, which increases the slope, as a result of all
beads translocating to the trans side. See Ref. �21� for de-
tails. At high force values crowding of the beads on the trans
side also has a contribution.

From Fig. 6, it is evident that ��s2�t�
� ��s�t�
2 at small f ,
but that ��s2�t�
→ ��s�t�
2 as f is increased. This is another
indication of translocation becoming more deterministic with
increasing f , as it should due to the dynamics far from ther-
mal equilibrium being determined solely by a simple balance
between the frictional and the driving pore forces.

For forced translocation, our measured ��s2�t�
 distinc-
tively differs from the power law obtained using another
Langevin model �17�. Some of the authors therein have pub-
lished results reporting two slopes with different exponents,
instead �34�. Their observation of the chain elongation on the
cis side is in accord with our previous results and our argu-
ment based on the simple force balance �20,21�, similar in
nature to the one proposed by Sakaue �22�.

Also, it is evident from the results presented here and in
�20,21� that the pore plays a central role in polymer translo-
cation. Our pore model is a homogeneous cylinder whereas
others �17,35� have used a wall of immobile �pointlike� par-
ticles through which the pore is implemented by removing a
single particle. The latter implementation of the pore does
not result in a homogeneous pore potential. The properties of
the pore clearly have substantial contribution in the forced
but not in the unforced translocation, a natural consequence
of the forced translocation being a highly out-of-equilibrium
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FIG. 6. �Color online� The mean-squared displacement of the
reaction coordinate ��s2�t�
 is drawn in the same plot with the
square of the mean displacement ��s�t�
2 for forced translocation. In
the limit of high t the curves are aligned. With larger force, the
alignment becomes more evident already at smaller values of t. The
data is from LD simulations in 3D with N=200 and f =0.3, 1, and
10 �from bottom to top�.
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process in the biologically and experimentally relevant force
regime.

VI. SUMMARY

We have studied unforced translocation in dimensions 2

d
4 with Langevin dynamics �LD� simulations and in 3D
with stochastic rotation dynamics �SRD�, including hydrody-
namics with a finite Reynolds number. We have reflected the
results against processes of forced translocation and a poly-
mer escaping from an infinite pore.

First, we validated our continuous pore and wall model by
studying the dependence of translocation time � with poly-
mer length N in unforced translocation. We obtained scaling
��N� for d�2,3 ,4 with LD and for 3D with hydrodynam-
ics using SRD. In dimension of 2 we obtained the scaling
exponent �=2.55�0.05. In 3D we got �=2.33�0.05 and
�=2.30�0.07 without and with hydrodynamics, respec-
tively. Our pore design allowed us to investigate the relation
between � and N in 4D, where we obtained �=2.26�0.05.

The obtained values for the scaling exponents are in
agreement with the reasonably well established values ob-
tained from simulations using wall and pore implementations
based on immobile pointlike particles. These particles give
rise to pore potentials curved around the pore opening. This
validates our pore design and also strongly suggests that the
scaling exponents for unforced translocation are universal in
contrast to those for forced translocation which are highly
force and model dependent. From the scaling obtained in 4D
we were able to exclude a suggested lower-limit argument
for � and confirm the one presented in �9�, ��2�+1. Hy-
drodynamics, although speeding up unforced translocation,
was seen not to have an appreciable effect on unforced trans-
location time scaling with N, again in stark contrast with
forced translocation �21�. In accordance with this, the pore
being filled with solvent or not was seen not to have an effect
on unforced translocation, when hydrodynamics was in-
cluded.

By extracting transfer probabilities as a function of trans-
located beads from our unforced translocation simulations,
we found out that they agreed well with those obtained from
equilibrium theory �24,25� in 3D. However, the probabilities
from our simulations deviated from the theoretical probabili-
ties in 2D. This was addressed to the translocating polymer
being more prone to be out of equilibrium in 2D than in 3D,
which we verified by measuring the relaxation and translo-
cation times from our simulations.

Distributions of average transition times between conse-
quent system states from our simulations proved to be
closely Poissonian. We observed small deviation only at
small time intervals, i.e., at large translocation velocities,
where the effect of consequently translocating particles being
connected to each other should most clearly be seen. It is fair

to state that the anomalous diffusion behavior evident in the
unforced translocation does not result from heavy-tailed
waiting-time distributions as in some other cases of anoma-
lous dynamics.

The measured mean-squared displacement of the reaction
coordinate s, i.e., the translocated polymer beads, showed
subdiffusive dynamics as expected. It was found to scale
with time t in the unforced translocation, ��s2�t�
� t�. The
effect of hydrodynamics on this observable was more pro-
nounced than on the scaling of translocation time with the
polymer length. Here, ��s2�t�
, which was smaller when hy-
drodynamics was included, is a direct measure of fluctua-
tions in the translocation process. These fluctuations are re-
duced through long-range correlations supported by
hydrodynamics. We observed this reduction in fluctuations
by hydrodynamics also through the distributions of average
transition times.

To gain understanding on the translocation process we
briefly investigated a simplified model where a polymer es-
capes from an infinite pore. We established that the scaling
obtained for this process is insensitive to the dimension of
the space into which the polymer is ejected, which corre-
sponds to the trans side in the standard translocation. From
this we conclude that the arguments based on the transloca-
tion time being determined by the initial configuration and
the dynamics of the polymer on the cis side are indeed jus-
tified, the trans side modifying it substantially only when the
polymer is driven out of equilibrium during the process,
which is the case in forced translocation. Through the simple
pore escape model we also showed the significance of pore
friction.

Lastly, we compared forced and unforced translocations
through the mean-squared displacements from the simula-
tions. In contrast to the unforced translocation, ��s2�t�
 ob-
tained for the forced translocation does not scale with respect
to time t. This is another indication that the scaling expo-
nents in forced translocation change with respect to force and
the used model. Also, the square of the mean displacements,
��s�t�
2, was seen to become increasingly aligned with the
mean-squared displacement as the force was increased,
which is in agreement with the argued force balance govern-
ing the process at this biologically relevant force regime.
This distinctively shows the more deterministic out-of-
equilibrium dynamics of the forced translocation compared
with the purely stochastic dynamics of the unforced translo-
cation, shown here to take place essentially in, or very close
to, thermal equilibrium.
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